New facility takes up the chase for doped athletes and future drugs
2022-02-02
Using a home-grown filamentous fungus, Mikael Hedeland, professor of analytical pharmaceutical chemistry, managed to expose four medalists guilty of doping at the Olympic Games in Athens. Now he is refining his methods further, opening a facility for mass spectrometry at the Uppsala Biomedical Center.

Would you take a drug that resulted in invincibility in your sport if you knew it would mean your death in five years? "Yes" answered more than half of all elite athletes surveyed in the late 20th century. Today, the proportion who would choose the drug is considerably smaller, a healthy development that can probably be attributed to the increasingly advanced methods of exposing use of performance-enhancing drugs.
“During the Athens Olympics in 2004, there was a lack of effective methods to detect the use of oxandrolone, an anabolic steroid that the body rapidly excretes. In a research project many years later, we worked with Cunninghamella, a filamentous fungus that turned out to break down substances in a similar way to humans and horses. With the help of this fungus, we discovered that oxandrolone leaves another, more long-lived and traceable substance behind, a finding that had major consequences in the world of sports,” says Mikael Hedeland, Professor of analytical pharmaceutical chemistry.
When the results from Uppsala reached the World Anti-Doping Agency, WADA, they chose to bring out 105 urine samples from Greece, then having been stored in the freezer for eight years. With the new analysis method, the agency found degradants from oxandrolone in several samples. A series of retroactive disqualifications were carried out and in four cases medals were recalled, among them a gold in shot put.

“It is of course positive if we help to expose cheating, and the story of the Olympic medals always come in handy to start research presentations with as it never fails to arouse interest. But our biggest contribution in this case is that we shed light on Cunninghamella's usefulness in finding degradants, so-called metabolites, from pharmacologically active substances. It is a cheap method that also reduces the need for animal experiments and which, after our study, has become scientifically widespread.”
Mikael Hedeland's group also continue to benefit from Cunninghamella in the work of curbing doping. Recently the team published an article in which they map eight metabolites from a variant of SARM, a form of anabolic compound that accelerates muscle growth, making them useful in the treatment of certain diseases. In competitive sports they have been banned since 2008, but are now being traced in both horses and athletes.
In 2018, Mikael Hedeland was recruited to Uppsala University after a long and successful stay at the Swedish National Veterinary Institute, SVA. Here, the group conducted a multi-year collaboration with Nordic Trotting and Galloping analysing samples from competition horses - the team's many notable efforts include the revelation of the French trainer who gave his horses cobalt. The assignment also provided revenue that helped finance a laboratory with a distinct focus on in vitro methods.
“It was an interesting time that opened several international doors. I have chosen to keep an employment of 20 percent and a doctoral student with a physical placement at SVA, and also continue my scientific collaboration with laboratories at the University of California and Deutche Sporthochschule Köln. In parallel, I see many opportunities for collaborations at Uppsala University, where our technology-intensive environment with a focus on separation science can add significant values.”
Currently, Mikael Hedeland is preparing a facility for mass spectrometry at Uppsala's Biomedical Centre. However, the process has - like much else - been delayed as a result of covid-19, but the ambition is to complete the establishment as soon as possible, thus being able to support other researchers in obtaining data in order to create faster, more selective analytical methods in pharmaceutical research.
“As soon as our facility is installed and ready, it will generate important data, including in the work of identifying and tracking endogenous substances that mark disease. Our analytical pharmaceutical chemistry is primarily an auxiliary science that with high quality analysis data lays the foundation for other groups to solve their challenges, and I am convinced that the competence we add will be of great value to our colleagues at Uppsala University”, says Mikael Hedeland.
FACTS
- Mass spectrometry is a technique in which a mass spectrometer distinguishes ions from each other based on their mass / charge relationship, which enables qualitative and quantitative analyzes in analytical chemistry.
- The first mass spectrometer was launched in the early 20th century. In 1922, F W Aston received the Nobel Prize in Chemistry for using a mass spectrograph to determine the weight of atoms.
- Mikael Hedeland's research group also runs projects focusing on Medicines in the environment, Metabolomics and Lipidomics.
MORE INFORMATION
CONTACT
Mikael Hedeland, Professor
Analytical pharmaceutical chemistry
mikael.hedeland@ilk.uu.se, 070-657 1663
text: Magnus Alsne, photo: Mikael Wallerstedt m fl
News about our research and team
-
Long Vo, new research engineer
We welcome Long Vo, new research engineer, to our group! Long will work with MUU, the masspectrometry core facility. ... -
Agnes Morén receives awards for Degree project
Agnes Morén, who during the fall semester 2022 completed her Degree project, Identification and Structural Elucidation of Cannabinoid Metabolites in Horse Urine Using UHPLC-HRMS, received the Medical officer of health Per Manell’s Prize for best presentation at the semester's closing symposium. We c... -
Symposium: Advanced analytical technologies for clinical and pharmaceutical applications
Welcome to BMC and Mini-symposium: Advanced analytical technologies for clinical and pharmaceutical applications with lectures from Susanne Wiedmer, Helsingin Yliopisto, Marianne Fillet, Université de Liège, Christian Neusüß, Hochschule Aalen and Martijn Schenning, Janssen Vaccines & Prevention. ... -
PhD thesis introducing new method to analyze potential vaccines
Lack of effective analytical tools to assess the safety and effectiveness of new vaccines often consumes unnecessarily large resources. In a new PhD thesis, Lars Geurink applies Capillary Electrophoresis and Analytical Quality by Design to develop CE tests with potential to enable better and more co... -
They won the Pharmaceutical Student Union's Pedagogical awards 2022
“Receiving the Student Council's Award for Student treatment gives important inspiration,” says Björn Wettermark, Professor of Pharmacoepidemiology, that together with Emma Lundkvist and Malin Nilsson Broberg receive the Pharmaceutical Student Union's Pedagogical awards 2022. ... -
Insects in the Fyris river carried 33 different pharmaceutical substances
In a study of insects in the Fyris river, researchers identified traces of 33 different pharmaceutical substances. "In combination, these substances can give unexpected and amplified effects that, when they reach further up the food chain, might also affect us humans," says Emelie Sedvall, PhD stude... -
New PostDoc: Ann-Marie Garzinsky
We welcome Ann-Marie Garzinsky, new Post Doc, to our group! Ann-Marie will be working in a collaboration on doping analysis with German Sport University in Cologne. Welcome! ... -
New students
We welcome new students to us: Annie Aspö, chemistry candidate, Hanif Faroghi, recipe student and Sofia Landström, pharmacy student. Annie is tutored by Sofia Nilsson, Hanif by Jakob Haglöf and Sofia by Jenny Nilsson. Welcome and good luck with your project! ... -
New facility takes up the chase for doped athletes and future drugs
Using a home-grown filamentous fungus, Mikael Hedeland, professor of analytical pharmaceutical chemistry, managed to expose four medalists guilty of doping at the Olympic Games in Athens. Now he is refining his methods further, opening a facility for mass spectrometry at the Uppsala Biomedical Cente...